Mars Global Surveyor

Mars Global Surveyor

Artist's conception of Mars Global Surveyor
Operator NASA
Major contractors Orbiter
Satellite of Mars
Orbital insertion date 1997-09-12 01:17:00 UTC
Launch date 1996-11-07 17:00:50 UTC
(15 years, 3 months and 10 days ago)
Launch vehicle Delta 7925
Mission duration April 1, 1999 -
November 2, 2006
(lost communication)
 Primary mission
 (completed 2001-01-31)

 First extended mission
 (completed 2002-01-31)

 Second extended mission
 (completed 2002-12-31)

 Comm Relay mission
 (completed 2006-09-30)

 Relay extended mission
 (completed 2006-11-02)
COSPAR ID 1996-062A
Homepage Mars Global Surveyor
Mass 1,030.5 kg (2,272 lb)
Power 980 W (Solar array / 2 NiH2 batteries)
Orbital elements
Eccentricity .7126
Inclination 93°
Apoapsis 17,836 km (11,083 mi)
Periapsis 171.4 km (107 mi)
Orbital period 11.64 h

The Mars Global Surveyor (MGS) was a US spacecraft developed by NASA's Jet Propulsion Laboratory and launched November 1996. It began the United States's return to Mars after a 10-year absence. It completed its primary mission in January 2001 and was in its third extended mission phase when, on 2 November 2006, the spacecraft failed to respond to messages and commands. A faint signal was detected three days later which indicated that the craft had gone into safe mode. All attempts to recontact the Mars Global Surveyor and resolve the problem failed. In January 2007 NASA officially ended the mission.

Contents

Specifications

The Surveyor spacecraft, fabricated at the Lockheed Martin Astronautics plant in Denver, is a rectangular-shaped box with wing-like projections (solar panels) extending from opposite sides. When fully loaded with propellant at the time of launch, the spacecraft weighed 1,060 kg (2,337 lb). Most of Surveyor's mass lies in the box-shaped module occupying the center portion of the spacecraft. This center module is made of two smaller rectangular modules stacked on top of each other, one of which is called the equipment module and holds the spacecraft's electronics, science instruments, and the 1750A mission computer. The other module, called the propulsion module, houses Surveyor's rocket engines and propellant tanks.

Scientific instruments

Five scientific instruments fly onboard Mars Global Surveyor:[1]

The Mars Orbiter Camera (MOC) science investigation used 3 instruments: a narrow angle camera that took (black-and-white) high resolution images (usually 1.5 to 12 m per pixel) and red and blue wide angle pictures for context (240 m per pixel) and daily global imaging (7.5 km per pixel). MOC returned more than 240,000 images spanning portions of 4.8 Martian years, from September 1997 and November 2006.[3] A high resolution image from MOC is either 1.5 or 3.1 km wide. So any image from this camera is at most 3.1 km wide. Often, a picture will be smaller than this because it has been cut to just show a certain feature. These high resolution images may be 3 to 10 km long. When a high resolution image is taken, a context image is taken as well. The context image shows the image footprint of the high resolution picture. Context images are typically 115.2 km square with 240 m/pixel resolution.[4]

The Mars Relay antenna supported the Mars Exploration Rovers for data relay in conjunction with Mars Orbiter Camera's 12 MB memory buffer. In total, more than 7.6 terabits of data were transferred this way.[5]

Launch and orbit insertion

The Surveyor spacecraft was launched from the Cape Canaveral Air Station in Florida on 7 November 1996 aboard a Delta II rocket. The spacecraft traveled nearly 750 million kilometers (466 million miles) over the course of a 300-day cruise to reach Mars on 11 September 1997.

Upon reaching Mars, Surveyor fired its main rocket engine for the 22-minute Mars orbit insertion (MOI) burn. This maneuver slowed the spacecraft and allowed the planet's gravity to capture it into orbit. Initially, Surveyor entered a highly elliptical orbit that took 45 hours to complete. The orbit had a periapsis of 262 km (163 mi) above the northern hemisphere, and an apoapsis of 54,026 km (33,570 mi) above the southern hemisphere.

Aerobraking

After orbit insertion, Surveyor performed a series of orbit changes to lower the periapsis of its orbit into the upper fringes of the Martian atmosphere at an altitude of about 110 km (68 mi). During every atmospheric pass, the spacecraft slowed down by a slight amount because of atmospheric resistance. The density of the Martian atmosphere at such altitudes is comparatively low, allowing this procedure to be performed without damage to the spacecraft. This slowing caused the spacecraft to lose altitude on its next pass through the orbit's apoapsis. Surveyor used this aerobraking technique over a period of four months to lower the high point of its orbit from 54,000 km (33,554 mi) to altitudes near 450 km (280 mi).

On 11 October, the flight team performed a maneuver to raise the periapsis out of the atmosphere. This suspension of aerobraking was performed because air pressure from the atmosphere caused one of Surveyor's two solar panels to bend backward by a slight amount. The panel in question was slightly damaged shortly after launch in November 1996. Aerobraking was resumed on 7 November after flight team members concluded that aerobraking was safe, provided that it occurs at a more gentle pace than proposed by the original mission plan.

Under the new mission plan, aerobraking occurred with the low point of the orbit at an average altitude of 120 km (75 mi), as opposed to the original altitude of 110 km (68 mi). This slightly higher altitude resulted in a decrease of 66 percent in terms of air resistance pressure experienced by the spacecraft. During these six months, aerobraking reduced the orbit period to between 12 and 6 hours.

From May to November 1998, aerobraking was temporarily suspended to allow the orbit to drift into the proper position with respect to the Sun. Without this hiatus, 'Surveyor' would complete aerobraking with its orbit in the wrong solar orientation. In order to maximize the efficiency of the mission, these six months were devoted to collecting as much science data as possible. Data was collected between two to four times per day, at the low point of each orbit.

Finally, from November 1998 to March 1999, aerobraking continued and shrank the high point of the orbit down to 450 km (280 mi). At this altitude, Surveyor circled Mars once every two hours. Aerobraking was scheduled to terminate at the same time the orbit drifted into its proper position with respect to the Sun. In the desired orientation for mapping operations, the spacecraft always crossed the day-side equator at 14:00 (local Mars time) moving from south to north. This geometry was selected to enhance the total quality of the science return.

Mapping

The spacecraft circled Mars once every 117.65 minutes at an average altitude of 378 kilometers (235 mi). It is in a near polar orbit (inclination = 93°) which is almost perfectly circular, moving from being over the south pole to being over the north pole in just under an hour. The altitude was chosen to make the orbit sun-synchronous, so that all images that were taken by the spacecraft of the same surface features on different dates were taken under identical lighting conditions. After each orbit, the spacecraft viewed the planet 28.62° to the west because Mars had rotated underneath it. In effect, it was always 14:00 for Mars Global Surveyor as it moved from one time zone to the next exactly as fast as the Sun. After seven sols and 88 orbits, the spacecraft would approximately retrace its previous path, with an offset of 59 km to the east. This ensured eventual full coverage of the entire surface.

In its extended mission, MGS did much more than study the planet directly beneath it. It commonly performed rolls and pitches to acquire images off its nadir track. The roll maneuvers, called ROTOs (Roll Only Targeting Opportunities), rolled the spacecraft left or right from its ground track to shoot images as much as 30° from nadir. It was possible for a pitch maneuver to be added to compensate for the relative motion between the spacecraft and the planet. This was called a CPROTO (Compensation Pitch Roll Targeting Opportunity), and allowed for some very high resolution imaging by the onboard MOC (Mars Orbiting Camera).

In addition to this, MGS could shoot pictures of other orbiting bodies, such as other spacecraft and the moons of Mars.[6] In 1998 it imaged what was later called the Phobos monolith, found in MOC Image 55103.[7][8]

Primary Mission Results

After analyzing hundreds of high-resolution pictures of the Martian surface taken by the orbiting Mars Surveyor spacecraft, a team of researchers found that weathering and winds on the planet create landforms, especially sand dunes, remarkably similar to those in some deserts on Earth.[9]

Results from the Mars Global Surveyor primary mission (1996–2001) were published in the Journal of Geophysical Research by M. Malin and K. Edgett.[10] Some of these discoveries are:

MER communications subsystem

Mars Global Surveyor functioned as a communications satellite relaying data back to Earth from the MER surface landers. Portions of MGS had been scheduled to remain active until at least September 2008 to support MER.[22]

Loss of contact

On November 2, 2006, NASA lost contact with the spacecraft after commanding it to adjust its solar panels. Several days passed before a faint signal was received indicating that the spacecraft had entered safe mode and was awaiting further instructions.

On November 20, 2006, the Mars Reconnaissance Orbiter spacecraft attempted to image Mars Global Surveyor to verify the orientation of the spacecraft.[23] The effort was unsuccessful.

On November 21 and 22, 2006, Mars Global Surveyor failed to relay communications to the Opportunity rover on the surface of Mars. In response to this complication, Mars Exploration Program manager Fuk Li stated, "Realistically, we have run through the most likely possibilities for re-establishing communication, and we are facing the likelihood that the amazing flow of scientific observations from Mars Global Surveyor is over."[24]

On April 13, 2007, NASA announced the loss of the spacecraft was caused by a flaw in a parameter update to the spacecraft's system software. The spacecraft was designed to hold two identical copies of the system software for redundancy and error checking. Subsequent updating to the software encountered human error when two independent operators updated separate copies with differing parameters followed by a corrective update that unknowingly included a memory fault which resulted in the loss of the spacecraft.

Previously, in November of 2005, two operators had changed unknowingly, the same parameter on separate copies of the system software. Each operator had used a slightly different precision when inputting a parameter, which resulted in a small but significant difference in the two copies. A subsequent memory readout revealed this inconsistency to the mission's team.
In order to correct the error, an update was drafted in June 2006. However, two memory addresses were incorrectly handled in the update, which could allow values to be written into the wrong memory addresses and further complications with the mission. Five months later, the problematic memory addresses were called, resulting in the solar arrays being driven until they hit a hard stop and became unmovable. The complication lead the spacecraft to incorrectly diagnose a failure of a gimbal motor causing the spacecraft to rotate to allow the unmovable solar array to point toward the Sun. However, in this position the remaining usable battery was also directed toward the Sun, resulting in the battery overheating and eventually failing. The spacecraft subsequently went into safe mode and contact with the spacecraft was lost.[25][26]

Originally, the spacecraft was intended to observe Mars for 1 Martian year (approximately 2 Earth years). However, based on the vast amount of valuable science data returned, NASA had previously extended the mission three times.

MGS and general relativity: the Lense-Thirring test

Data from MGS have also been used to perform a test of the general relativistic Lense-Thirring effect which consists of a small precession of the orbital plane of a test particle moving around a central, rotating mass such as a planet.[27] The interpretation of the out-of-plane Root-Mean-Square (RMS) time series of MGS in terms of such a relativistic feature of motion by L. Iorio was criticized by K. Krogh;[28] however, L. Iorio supported his thesis with new arguments.[29]

Discovery of water on Mars

On 6 December 2006 NASA released photos of two craters called Terra Sirenum and Centauri Montes which appear to show the presence of water on Mars at some point between 1999 and 2001. The pictures were produced by the Mars Global Surveyor and are quite possibly the spacecraft's final contribution to our knowledge of Mars and the question of whether life or water exists on the planet.[30][31]

Hundreds of gullies were discovered that were formed from liquid water, possible in recent times. These gullies occur on steep slopes and mostly in certain bands of latitude.[18]

A few channels on Mars displayed inner channels that suggest sustained fluid flows. The most well-known is the one in Nanedi Valles. Another was found in Nirgal Vallis.[18]

Mission timeline

Other pictures

See also

References

Notes

  1. ^ Albee, A., Arvidson, R., Palluconi, F., Thorpe, T. (2001). "Overview of the Mars Global Surveyor mission" (PDF). Journal of geophysical research 106 (E10): 23291–23316. Bibcode 2001JGR...10623291A. doi:10.1029/2000JE001306. http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/16090/1/00-1989.pdf. 
  2. ^ "Design and Development of the Mars Observer Camera". Msss.com. 1992-09-16. http://www.msss.com/mars/observer/camera/papers/moc_ijist/moc_ijist.html. Retrieved 2010-10-07. 
  3. ^ "Space Cameras, Operations, and Science - Malin Space Science Systems". Msss.com. http://www.msss.com. Retrieved 2010-10-07. 
  4. ^ [1]
  5. ^ http://www.marsjournal.org/contents/2010/0001/files/malin_mars_2010_0001.pdf
  6. ^ http://www.msss.com/ MOC images
  7. ^ Optech press release, "Canadian Mission Concept to Mysterious Mars moon Phobos to Feature Unique Rock-Dock Maneuver," 3 May 2007.
  8. ^ PRIME: Phobos Reconnaissance & International Mars Exploration, Mars Institute website. Retrieved 27 July 2009.
  9. ^ Thomas, Peter C.; and Veverka, Joseph "Bright Sand Dunes on Mars Could Be Mounds of Sulfates. [Web links"]. myeducationresearch.org, The Pierian Press, 18 Feb 1999. Online. Internet.. 18 May 1743. http://myeducationresearch.org/databases/cgi-bin/kwq.asp?qu=@recnumber%20FBA20099170&FreeText=&sc=%2Fpierianp%2Ffba%2F. Retrieved [30 Nov 2010]. 
  10. ^ Malin, M. and K. Edgett. 2001. The Mars Global Surveyor Mars Orbiter Camera: Interplanetary Cruise through Primary Mission: 106. 23429-23570Journal of Geophysical Research
  11. ^ "Mars Global Surveyor MOC2-1618 Release". Msss.com. doi:10.1126/science.288.5475.2330. http://www.msss.com/mars_images/moc/2006/12/06/gullies/sirenum_crater/index.html. Retrieved 2010-10-07. 
  12. ^ Malin, M. et al. 2006. Present-Day Impact Cratering Rate and Contemporary Gully Activity on Mars. science: 314. 1573-1577
  13. ^ "Changing Mars Gullies Hint at Recent Flowing Water". SPACE.com. 2006-12-06. http://www.space.com/scienceastronomy/061206_mars_gullies.html. Retrieved 2010-10-07. 
  14. ^ "Mars Global Surveyor MOC2-239 Release". Mars.jpl.nasa.gov. http://mars.jpl.nasa.gov/mgs/msss/camera/images/june2000/ab1/index.html. Retrieved 2010-10-07. 
  15. ^ [2]
  16. ^ "Mars Global Surveyor MOC2-281 Release". Mars.jpl.nasa.gov. 2001-05-24. http://mars.jpl.nasa.gov/mgs/msss/camera/images/moc_5_24_01/dustdevil/index.html. Retrieved 2010-10-07. 
  17. ^ "Mars Global Surveyor MOC2-367 Release". Msss.com. 2003-05-21. http://www.msss.com/mars_images/moc/2003/05/21/index.html. Retrieved 2010-10-07. 
  18. ^ a b c Malin, M. and K. Edgett. 2001. The Mars Global Surveyor Mars Orbiter Camera: Interplanetary ruise through Primary Mission: 106. 23429-23570Journal of Geophysical Research
  19. ^ Motazedian, T. 2003. Currently Flowing Water on Mars. Lunar and Planetary science XXXIV. 1840.pdf
  20. ^ "Mars Water, Odd Surface Features Tied to Life". SPACE.com. 2003-03-28. http://space.com/scienceastronomy/mars_streaks_030328.html. Retrieved 2010-10-07. 
  21. ^ "Mars Global Surveyor MOC2-284 Release". Mars.jpl.nasa.gov. http://mars.jpl.nasa.gov/mgs/msss/camera/images/moc_5_24_01/change/index.html. Retrieved 2010-10-07. 
  22. ^ "NASA Mars Spacecraft Gear Up for Extra Work" (Press release). NASA. 25 September 2006. http://www.nasa.gov/mission_pages/mars/news/mgs-20060925.html. Retrieved 19 May 2009. 
  23. ^ Reuters (13 November 2006). "Orbiter may be last chance to rescue Mars probe". CNN. Archived from the original on 18 November 2006. http://web.archive.org/web/20061118050229/http://edition.cnn.com/2006/TECH/space/11/13/mars.probe.reut/index.html. Retrieved 19 May 2009. 
  24. ^ "NASA's Mars Global Surveyor May Be at Mission's End" (Press release). NASA. 21 November 2006. http://www.nasa.gov/mission_pages/mgs/mgs-20061121.html. Retrieved 19 May 2009. 
  25. ^ "Report Reveals Likely Causes of Mars Spacecraft Loss" (Press release). NASA. 13 April 2007. http://www.nasa.gov/mission_pages/mgs/mgs-20070413.html. Retrieved 19 May 2009. 
  26. ^ "Mars Global Surveyor (MGS) Spacecraft Loss of Contact". NASA. 13 April 2007. http://www.nasa.gov/pdf/174244main_mgs_white_paper_20070413.pdf. Retrieved 28 Dec 2010. 
  27. ^ Iorio L. (September 2006). "COMMENTS, REPLIES AND NOTES: A note on the evidence of the gravitomagnetic field of Mars". Classical Quantum Gravity 23 (17): 5451–5454. arXiv:gr-qc/0606092. Bibcode 2006CQGra..23.5451I. doi:10.1088/0264-9381/23/17/N01. 
  28. ^ Krogh K. (November 2007). "Comment on 'Evidence of the gravitomagnetic field of Mars'". Classical Quantum Gravity 24 (22): 5709–5715. Bibcode 2007CQGra..24.5709K. doi:10.1088/0264-9381/24/22/N01. 
  29. ^ Iorio L. (June 2010). "On the Lense-Thirring test with the Mars Global Surveyor in the gravitational field of Mars". Central European Journal of Physics 8 (3): 509–513. arXiv:gr-qc/0701146. Bibcode 2010CEJPh...8..509I. doi:10.2478/s11534-009-0117-6. 
  30. ^ Water has been flowing on Mars within past five years, Nasa says. Times Online. Retrieved on 17 March 2007
  31. ^ Mars photo evidence shows recently running water. The Christian Science Monitor. Retrieved on 17 March 2007
  32. ^ "One Mars orbiter takes first photos of other orbiters". NASA/Jet Propulsion Laboratory news release. http://www.nasa.gov/vision/universe/solarsystem/mgs-051905.html. Retrieved 17 June 2005. 
  33. ^ "Mars rover, Global Surveyor, Odyssey missions extended". http://spaceflightnow.com/news/n0609/26rovers/. Retrieved 27 September 2006. 
  34. ^ Shiga, David (9 November 2006). "NASA struggles to contact lost Mars probe". New Scientist. http://space.newscientist.com/article/dn10498-nasa-struggles-to-contact-lost-mars-probe.html. Retrieved 9 November 2006. 

Further reading

External links